Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Запорожский Александр Юрьевич

Должность: Директор

Дата подписания: 07.02.2022 07:22:44

Уникальный программный ключ:

23a796eca5935c5928180a0186cabc9a9d90f6d5

федеральное агентство морского и речного транспорта федеральное государственное бюджетное образовательное учреждение высшего образования МОРСКОЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени адмирала Г.И. Невельского

находкинский филиал

Колледж

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОП.09 Техническая механика

индекс и название учебной дисциплины согласно учебному плану

основная образовательная программа среднего профессионального образования по подготовке специалистов среднего звена

по специальности **23.02.01** «Организация перевозок и управление на транспорте (по видам)»

(шифр в соответствии с ОКСО и наименование)

Базовая подготовка

Находка 2021 г. СОГЛАСОВАНО

протокол заседания цикловой методической комиссии протокол от 28.06.2021 г. № 10

председатель

О.М. Жаткина

ФИО

УТВЕРЖДАЮ

Зам. хиректора филиала по УПР Auceus

А.В. Смехова

28.06.2021 г.

Фонд оценочных средств разработан на основе рабочей программы учебной дисциплины «Техническая механика», утвержденной директором от 01.07.2021 г.

Разработчик (и): Жданова Т.В., преподаватель Находкинского филиала МГУ им. адм. Г.И. Невельского

СОДЕРЖАНИЕ

- 1. Паспорт фонда оценочных средств
- 2. Формы контроля знаний по учебной
- 3. Комплект оценочных средств текущего контроля
- 4. Комплект оценочных средств промежуточной аттестации
- 5. Методические материалы, определяющие процедуру оценивания
- 6. Перечень материалов, оборудования и информационных источников, используемых для текущей и промежуточной аттестации

1. ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств (далее ФОС) предназначен для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Техническая механика».

ФОС включает контрольные материалы для проведения текущего и промежуточного контроля.

Формой аттестации по дисциплине является дифференцированный зачет.

1.1 Результаты освоения дисциплины, подлежащие проверке

В результате контроля и оценки по дисциплине осуществляется комплексная проверка следующих знаний и умений.

Результаты обучения (освоенные умения, знания)	Формы и методы контроля и оценки
уметь:	
У1 - производить расчеты	Практические занятия, внеаудиторная
механических передач и	работа, тестирование
простейших сборочных единиц;	
У2 - читать кинематические схемы;	
УЗ - определять напряжения в	
конструкционных элементах;	
знать:	
31 - основы технической механики;	Практические занятия,
32 - виды механизмов, их	внеаудиторная самостоятельная работа
кинематические и динамические	Текущий контроль в форме:
характеристики;	- устного и письменного опроса;
33 - методику расчета элементов	- самостоятельной работы;
конструкций на прочность,	- решения задач;
жесткость и устойчивость при	- тестирования по темам.
различных видах деформации;	Рубежный контроль в форме:
34 - основы расчетов механических	- контрольной работы по каждому
передач и простейших сборочных	разделу дисциплины.
единиц общего назначения.	Итоговый контроль в форме
	дифференцированного зачета

1.2.В результате освоения учебной дисциплины обучающийся должен владеть общими (ОК) и профессиональными (ПК) компетенциями.

В результате освоения учебной дисциплины обучающийся должен владеть общими (ОК) и профессиональными (ПК) компетенциями.

Код	Наименование результатов обучения		
OK.1.	Понимать сущность и социальную значимость будущей профессии, проявлять к		
OK.1.	ней устойчивый интерес.		
	Организовывать собственную деятельность, выбирать типовые методы и		
OK.2.	способы выполнения профессиональных задач, оценивать их эффективность и		
	качество.		
OK.3.	Принимать решения в стандартных и нестандартных ситуациях и нести за них		

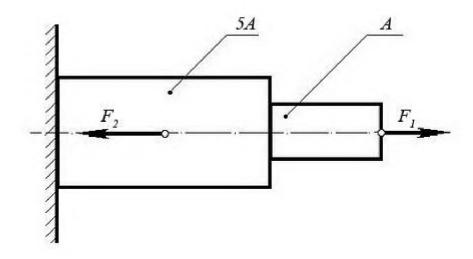
	ответственность.
ОК.4.	Осуществлять поиск и использование информации, необходимой для эффектного выполнения профессиональных задач, профессионального и личностного развития.
OK.5.	Использовать информационные технологии в профессиональной деятельности.
OK.6.	Работать в коллективе и команде, эффективно общаться с коллегами, руководителями, потребителями.
OK.7.	Брать на себя ответственность за работу членов команды (подчиненных), результат выполнения заданий.
OK8.	Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.
OK 9.	Ориентироваться в условиях частой смены технологий в профессиональной деятельности.
ПК 1.1.	Выполнять операции по осуществлению перевозочного процесса с применением современных информационных технологий управления перевозками.
ПК 1.2.	Организовывать работу персонала по обеспечению безопасности перевозок и выбору решений.
ПК 3.2.	Обеспечивать осуществление процесса управления перевозками на основе логической компетенции и организовывать рациональную переработку грузов.

2. ФОРМЫ КОНТРОЛЯ ЗНАНИЙ ПО УЧЕБНОЙ ТЕНИЧЕСКАЯ МЕХАНИКА

Темы учебной дисциплины	Проверяемые знания умения, ОК и ПК	Форма и методы контроля и оценки результатов обучения	
Введение			
Раздел 1. Теоретическая механи	ка		
Тема 1.1. Основные понятия и	У1, 34, ОК1, ОК3, ОК5, ОК9, ПК	Устный опрос, решение	
аксиомы статики	1.1	задач	
Тема 1.2. Плоская система сходящихся сил	У1, У2, У3, 34, ОК1, ОК2, ПК 3.2	Практические занятия	
Тема 1.3. Пара сил и момент	У2, У3, 33, 34, ОК1, ОК4, ОК5, ПК	Ответить на вопросы,	
силы относительно точки	1.1, ПК1.2	решение задач	
Тема 1.4. Плоская система	У2, У3, 32, ОК4, ОК5, ОК6, ОК7,	-	
произвольно расположенных	ПК1.2, ПК 3.2	Практические занятия	
сил			
Тема 1.5. Центр тяжести	У1, У3, 31, ОК1, ОК2, ОК3, ОК8,	Ответить на вопросы,	
	ПК1.2, ПК 3.2	решение задач	
Тема 1.6. Основные понятия кинематики	У3, 33, ОК3, ОК4, ОК9, ПК 1.1	Ответить на вопросы	
Тема 1.7. Кинематика точки	У1, 33, ОК1, ОК5, ПК1.2	Практические занятия	
Тема 1.8. Простейшие движения	У1, 33, 34, ОК1, ОК2, ОК3, ПК 3.2	Практические занятия	
твердого тела		Р	
Тема 1.9. Основные понятия и	У2, 31, 32, ОК5, ОК7, ОК8, ОК9,	Решение задач	
аксиомы динамики	ПК 3.2		
Tema 1.10. Движение материальной точки	У2, 33, 34, ОК1, ОК4, ПК 1.1	Решение задач	

Тема 1.11. Трение	У2, У3, 31, 32, ОК3, ПК 1.1, ПК1.2	Тестирование				
Раздел 2. Сопротивление матери	Раздел 2. Сопротивление материалов					
Тема 2.1. Основные положения	У3, 34, ОК8, ПК 3.2	Ответить на вопросы				
Тема 2.2. Растяжение и сжатие	У3, 33, 34, ОК1, ОК2, ОК9, ПК 3.2	Практические занятия				
Тема 2.3. Практические расчеты на срез и смятие	У3, 31, ОК1, ОК2, ОК3, ОК4, ПК 1.2	Ответить на вопросы				
Тема 2.4. Геометрические характеристики плоских сечений	У3, 31, 32, ОК3, ПК 1.1, ПК1.2, ПК 3.2	Самостоятельная работа				
Тема 2.5. Кручение	У1, У3, 31, 32, ОК1, ОК2, ОК3, ОК4, ОК5, ОК6, ПК 1.1, ПК1.2	Решение задач				
Тема 2.6. Изгиб	У1, У3, 33, 34, ОК1, ОК2, ОК3, ОК6, ОК7, ОК8, ОК9, ПК 1.1	Решение задач				
Тема 2.7. Гипотезы прочности и их назначение	У1, 34, ОК5, ОК6, ОК7, ОК8, ОК9, ПК 1.1	Тестирование				
Раздел 3. Детали машин						
Тема 3.1. Основные положения	31, 33, 34, OK2, OK4, OK5, OK6, IK 3.2	Ответить на вопросы				
Тема 3.2. Общие сведения о	31, 32, ОК1, ОК2, ОК9, ПК 3.2	Ответить на вопросы				
передачах						
Тема 3.3. Фрикционные и	У2, У3, 31, ОК1, ОК2, ОК3, ОК7,	Решение задач				
тома 3.4. Зубуютую у уютуура	ОК8, ОК9, ПК 3.2 У3, 31, 33, ОК3, ОК4, ОК8, ОК9,	Розголика за так				
Тема 3.4. Зубчатые и цепные передачи	У3, 31, 33, ОК3, ОК4, ОК8, ОК9, ПК 3.2	Решение задач				
Тема 3.5. Передача "винт-гайка"	У1, 31, ОК5, ОК6, ОК7, ОК8, ОК9, ПК 3.2	Решение задач				
Тема 3.6. Червячная передача	У1, 31, OK5, OK6, OK8, OK9, ПК 3.2	Решение задач				
Тема 3.7. Валы и оси	У1, 31, ОК5, ОК6, ОК8, ОК9, ПК 3.2	тестирование				
Тема 3.8. Подшипники	У1, 31, ОК5, ОК6, ОК7, ОК8, ОК9, ПК 3.2	Решение задач				
Тема 3.9. Соединение деталей машин	У1, 31, ОК5, ОК6, ОК7, ОК8, ОК9, ПК 3.2	Тестирование				
	У1, У2, У3, 31, 32, 33, 34, ОК1, ОК2, ОК3, ОК4, ОК5, ОК6, ОК7, ОК8, ОК9, ПК 1.1, ПК1.2, ПК 3.2	Дифференцированный зачет				

3. КОМПЛЕКТ ОЦЕНОЧНЫХ СРЕДСТВ ТЕКУЩЕГО КОНТРОЛЯ

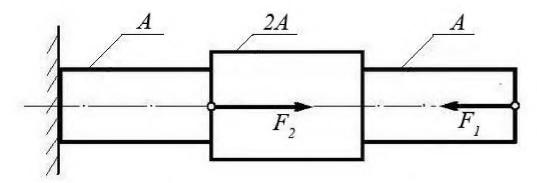

Раздел 1. Теоретическая механика

Тема 1.1. Основные понятия и аксиомы статики

Проверяемые результаты обучения: У1, 34, ОК1, ОК3, ОК5, ОК9, ПК 1.1 Решить задачи:

Задача №1:

При помощи эпюры напряжений определить наиболее напряженный участок двухступенчатого круглого бруса, нагруженного продольными силами F_1 и F_2 .

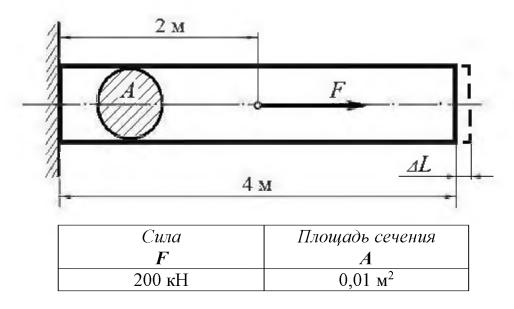


Сила	Сила	Площадь сечения
F_1	F_2	A
20 кН	80 кН	$0,1 \text{ m}^2$

Задача №2:

Ступенчатый брус нагружен продольными силами F_1 и F_2 . Построить эпюру нормальных напряжений в сечениях бруса и указать наиболее напряженный участок.

Вес бруса не учитывать.



$\mathit{Cuлa}\; F_1$	C ила F_2	Площадь сечения А
10 кН	25 кН	0.2 m^2

Задача №3:

Используя закон Гука, найти удлинение ΔL однородного круглого бруса, если известно, что он изготовлен из алюминиевого сплава, имеющего модуль упругости $E = 0.4 \times 10^5 \ M\Pi a$.

Вес бруса не учитывать.

(Ответ: общее удлинение бруса $\Delta L = FL / (EA) = 2 \times 10^5 \times 2 / 0.4 \times 10^{11} \times 0.01 = 10^{-3}$ м или $\Delta L = 1.0$ мм)

Тема 1.2. Плоская система сходящихся сил

Проверяемые результаты обучения: У1, У2, У3, З4, ОК1, ОК2, ПК 3.2

Практическая работа* Определение равнодействующей плоской системы сходящихся сил

Цель работы – произвести графическое и аналитическое исследование плоской системы сходящихся сил, выявить уравновешена ли заданная система сил **Задание**

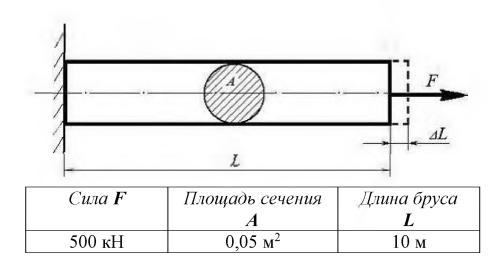
- 1. Для заданной системы сходящихся сил в соответствии с вариантом построить в масштабе силовой многоугольник. Записать выбранный масштаб сил. Измерить линейкой длину вектора равнодействующей и транспортиром угол между равнодействующей и осью х. Учитывая масштаб построения, вычислить модуль равнодействующей силы.
- 2. Вычислить модуль и направление равнодействующей аналитическим методом проекций.
- 3.Определить относительные погрешности вычисления модуля и направления равнодействующей. При расхождении более 10% вычисления и построения следует проверить.
- 4. Сделать вывод об уравновешенности заданной системы сил.
- 5.Ответить на контрольные вопросы.

Контрольные вопросы

- 1. Как производится графическое сложение сил, приложенных к твёрдому телу в одной точке? Влияет ли порядок сложения векторов при построении силового многоугольника на величину равнодействующей?
- 2. Каково направление равнодействующей силы в силовом многоугольнике?
- 3. Можно ли построив силовой многоугольник, сделав вывод об уравновешенности заданной системы?
- +4.Как определяется проекция силы на ось? В каком случае она равна нулю?
- 5. Каково аналитическое условие равновесия плоской системы сходящихся сил?

- 6.В каких случаях следует графический способ определения равнодействующей, а в каких аналитический?
- 7. Как можно произвести уравновешивание плоской системы сходящихся сил?

Тема 1.3 Пара сил и момент силы относительно точки

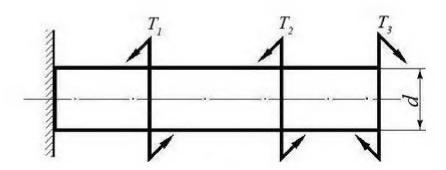

Проверяемые результаты обучения: У2, У3, З3, З4, ОК1, ОК4, ОК5, ПК 1.1, ПК1.2 Ответить на вопросы:

- 1. Дайте определение абсолютно твердого тела и материальной точки.
- 2. Что такое сила? Охарактеризуйте эту физическую величину и единицу ее измерения в системе СИ.
- 3. Перечислите и охарактеризуйте основные аксиомы статики.
- 4. Что такое "эквивалентная", "равнодействующая" и "уравновешивающая" система сил?
- 5. Теорема о равновесии плоской системы трех непараллельных сил и ее доказательство.
- 6.В чем разница между активными силами (нагрузками) и реактивными силами (реакциями)? Перечислите и охарактеризуйте наиболее распространенные виды связей между несвободными телами.
- 7.В чем разница между распределенной и сосредоточенной нагрузкой? Что такое "интенсивность" плоской системы распределенных сил и в каких единицах она измеряется?
- 8. Сформулируйте принцип отвердевания и поясните его сущность.

Решить задачи: *Задача №4:*

Однородный брус длиной L и поперечным сечением площадью A нагружен растягивающей силой F. Используя закон Гука, найти удлинение бруса ΔL , если известно, что он изготовлен из стального сплава, имеющего модуль упругости $E = 2.0 \times 10^5 \, M\Pi a$.

Вес бруса не учитывать.


(Ответ: удлинение бруса $\Delta L = FL / (EA) = 5 \times 10^5 \times 10 / 2 \times 10^{11} \times 0.05 = 5 \times 10^{-4}$ м или $\Delta L = 0.5$ мм)

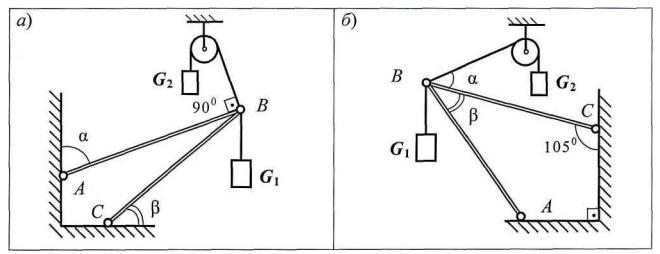
Задача №5:

Однородный круглый брус жестко защемлен одним концом и нагружен внешними вращающими моментами T_1 , T_2 и T_3 .

Построить эпюру крутящих моментов и выполнить проверочный расчет бруса на прочность, при условии, что предельно допустимое касательное напряжение: $[\tau] = 30 \, M\Pi a$.

При расчете принять момент сопротивления кручению круглого бруса $W \approx 0.2 \ d^3$.

Вращающий	Вращающий	Вращающий	Диаметр бруса
момент	момент	момент	d
T_1	T_2	T_3	
30 Нм	40 Нм	30 Нм	0,02 м


(Ответ: максимальное касательное напряжение в брусе - 25 МПа, что меньше предельно допустимого, т.е. брус выдержит заданную нагрузку.)

Тема 1.4 Плоская система произвольно расположенных

Проверяемые результаты обучения: У2, У3, 32, ОК4, ОК5, ОК6, ОК7, ПК1.2, ПК 3.2 **Практическая работа*: Выполнение графико- расчетных работ**

Цель работы: произвести графическое и аналитическое исследование плоской системы сходящихся сил, выявить уравновешена ли заданная система сил «ОПРЕДЕЛЕНИЕ СИЛ В СТЕРЖНЯХ»

Задание. При помощи стержневого устройства *ABC* (в точках *A*, *B* и С соединения шарнирные) удерживаются в равновесии два груза. Определить: І)реакции стержней, удерживающих грузы. Массой стержней пренебречь; ІІ)из условия прочности размеры поперечного сечения стержней кронштейна в форме: круга и уголка равнополочного по ГОСТ 8509-86 г., [c]=140 МПа. Данные своего варианта взять из табл. РГР № 1

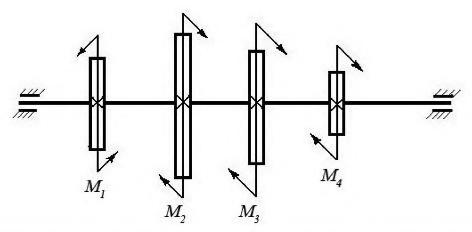
Схемы к задаче РГР № 1

Таблица РГР № 1

a		80 60 75 65 95	95	G_1	G_2			
β	град	45	55	65	40	30		
		01	02	03	04	05	к 40	H 50
	4e	06	07	08	09	10	30	80
	задаче	11	12	13	14	15	60	40
	№ варианта апныс к зада	16	17	18	19	20	20	50
	№ вар и данныс	21	22	23	24	25	50	80
	H	26	27	28	29	30	80	40
		31	32	33	34	35	40	20

Тема1.5 Центр тяжести

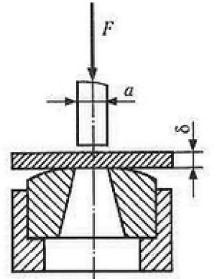
Проверяемые результаты обучения: У1, У3, З1, ОК1, ОК2, ОК3, ОК8, ПК1.2, ПК Ответить на вопросы:


- 1. Дайте определение центра тяжести тела и опишите основные методы его нахождения.
- 2. Дайте определение абсолютному и относительному движению. Что такое траектория точки?
- 3. Перечислите и охарактеризуйте способы задания движения точки.
- 4. Что такое скорость точки? Какими единицами (в системе СИ) она измеряется и какими параметрами характеризуется? Что такое средняя и истинная скорость точки?
- 5. Что такое ускорение точки? Какими единицами (в системе СИ) оно измеряется и какими параметрами характеризуется? Что такое среднее и истинное ускорение точки?
- 6. Дайте определение нормального и касательного ускорения. Сформулируйте теорему о нормальном и касательном ускорении.
- 7. Перечислите и охарактеризуйте виды движения точки в зависимости от величины ее касательного и нормального ускорения.

Решить задачи:

Задача №6:

Однородный круглый вал нагружен вращающими моментами M_1 , M_2 , M_3 и M_4 . Построить эпюру крутящих моментов в сечениях вала и определить наиболее напряженный участок.


С помощью формулы $M_{\kappa p} \approx 0.2 \ d^3 \ [\tau]$ определить минимальный допустимый диаметр вала d из условия прочности.

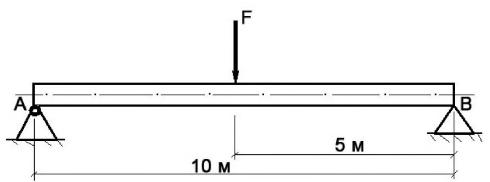
[τ]	M_1	M_2	M_3	M_4
30 МПа	160 Нм	50 Нм	80 Нм	30 Нм

(Ответ: диаметр вала d из условия прочности должен быть не менее 30 мм.) Задача №7

Определите силу F, необходимую для продавливания круглым пуансоном диаметром a отверстия в листе металла толщиной δ . Предел прочности листового металла на срез: $[\tau] = 360 \text{ M}\Pi a$.

Толщина листа	Диаметр пробойника
металла	а
δ	
0,5 мм	10 мм

(Omeem: $F \ge Acp \times [\tau] \ge \delta \times \pi \times a \times [\tau] \ge 0.0005 \times 3.14 \times 0.01 \times 360 \times 10^6 \ge 5652 H$,

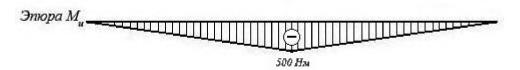

здесь **Аср** – площадь цилиндрической поверхности, по которой осуществляется срез)

Задача №8

Брус постоянного сечения опирается на две опоры, одна из которых шарнирная, вторая — угловая (ребро). В середине бруса приложена поперечная изгибающая сила $F = 200 \ H$.

Построить эпюру изгибающих моментов и показать наиболее нагруженное сечение бруса.

Вес бруса не учитывать.



Решение задачи:

1. Исходя из того, что реакция угловой опоры направлена по нормали к оси бруса, составляем уравнение равновесия относительно опоры A (из условия равновесия - сумма моментов отностельно любой точки бруса равна нулю) и определяем реакцию опоры В:

$$10 R_B - 5 F = 0 \implies R_B = 5 F/10 = 100 H$$
;

2. Строим эпюру изгибающих моментов, начиная от опоры В. Наиболее нагруженное сечение бруса (изгибающий момент - 500 Нм) находится в его середине.

Тема 1.6 Основные понятия кинематики

Проверяемые результаты обучения: У3, 33, ОК3, ОК4, ОК9, ПК 1.1

Ответить на вопросы:

- 1. Сформулируйте теорему о моменте равнодействующей системы сил (теорема Вариньона).
- 2.Сформулируйте три основных закона трения скольжения (законы Кулона).
- 3. Что такое коэффициент трения скольжения? От чего зависит его величина?
- 4.Сформулируйте условия равновесия пространственной системы произвольно расположенных сил.
- 5. Дайте определение и поясните сущность поступательного, вращательного, плоскопараллельного и сложного движения твердого тела.
- 6. Перечислите основные законы динамики и поясните их смысл.

Тема 1.7. Кинематика точки

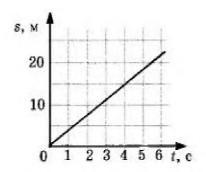
Проверяемые результаты обучения: У1, 33, ОК1, ОК5, ПК1.2

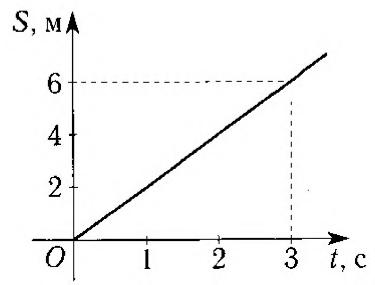
Практическая работа* «Кинематика точки»

Цель работы: научится по графикам записывать уравнения движения x(t) определять координаты точек, скорости их движения, находить время и координату места встречи.

Задание №1

Продифференцировать заданное уравнение движения, чтобы получить уравнение скорости


Задание №2


Продифференцировать уравнение скорости, чтобы получить значение касательного ускорения:

Задание №3

Составить свободную таблицу числовых значений при значениях времени t от 0 до 4 с.

Построить графики S, v,a, t выбрав масштабы для изображения по осям ординат, а также одинаковой для всех графиков масштаб времени по оси абсцисс

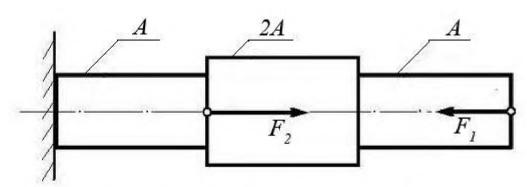
Контрольные вопросы:

- 1. Сформулируйте основные свойства кинематики точки в виде теорем.
- 2. Сформулируйте и докажите теорему о сложении пар сил. Сформулируйте условие равновесия плоской системы пар.
- 3. Сформулируйте и докажите лемму о параллельном переносе точки.
- 4.Сформулируйте и докажите теорему о приведении системы произвольно расположенных сил к данному центру. Что такое главным момент плоской системы произвольно расположенных сил?
- 5.Перечислите свойства главного вектора и главного момента системы произвольно расположенных сил.
- 6. Сформулируйте принцип независимости действия сил и поясните его смысл. Назовите две основные задачи динамики.

Тема 1.8 Простейшие движения твердого тела

Проверяемые результаты обучения: У1, 33, 34, ОК1, ОК2, ОК3, ПК 3.2 Практические занятия* Простейшие движения твердого тела Цель работы:

Тема 1.9. Основные понятия и аксиомы динамики

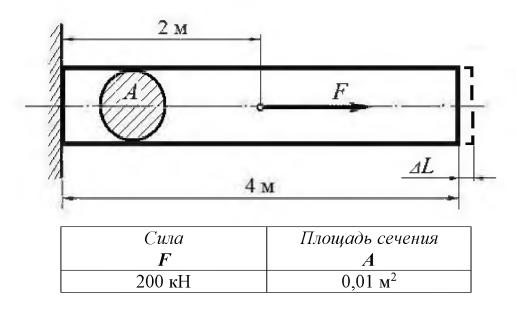

Проверяемые результаты обучения: У2, 31, 32, ОК5, ОК7, ОК8, ОК9, ПК 3.2

Решить задачи:

Задача №1:

Ступенчатый брус нагружен продольными силами F_1 и F_2 . Построить эпюру нормальных напряжений в сечениях бруса и указать наиболее напряженный участок.

Вес бруса не учитывать.

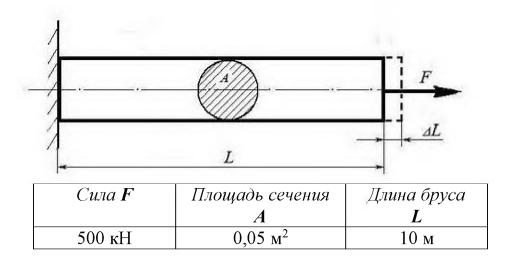


C ила F_1	C ила F_2	Площадь сечения А
10 кН	25 кН	0,2 m ²

Задача 2:

Используя закон Гука, найти удлинение ΔL однородного круглого бруса, если известно, что он изготовлен из алюминиевого сплава, имеющего модуль упругости $E = 0.4 \times 10^5 \, MHa$.

Вес бруса не учитывать.



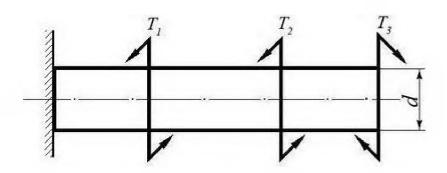
(Ответ: общее удлинение бруса
$$\Delta L = FL / (EA) = 2 \times 10^5 \times 2 / 0.4 \times 10^{11} \times 0.01$$

= 10^{-3} м или $\Delta L = 1.0$ мм)

Задача №3:

Однородный брус длиной L и поперечным сечением площадью A нагружен растягивающей силой F. Используя закон Гука, найти удлинение бруса ΔL , если известно, что он изготовлен из стального сплава, имеющего модуль упругости $E = 2.0 \times 10^5 \, M\Pi a$.

Вес бруса не учитывать.

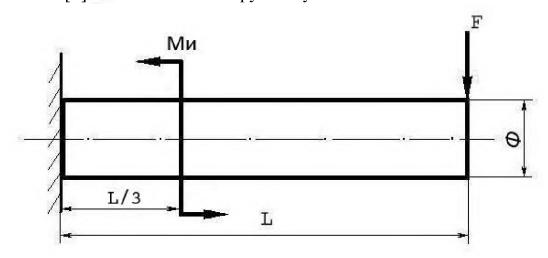

(Ответ: удлинение бруса $\Delta L = FL / (EA) = 5 \times 10^5 \times 10 / 2 \times 10^{11} \times 0.05 = 5 \times 10^{-4}$ м или $\Delta L = 0.5$ мм)

Задача №4:

Однородный круглый брус жестко защемлен одним концом и нагружен внешними вращающими моментами T_1 , T_2 и T_3 .

Построить эпюру крутящих моментов и выполнить проверочный расчет бруса на прочность, при условии, что предельно допустимое касательное напряжение: $[\tau] = 30 \, M\Pi a$.

При расчете принять момент сопротивления кручению круглого бруса $W \approx 0.2$ d^3 .


Вращающий	Вращающий	Вращающий	Диаметр
момент	момент	момент	бруса
T_1	T_2	T_3	d
30 Нм	40 Нм	30 Нм	0,02 м

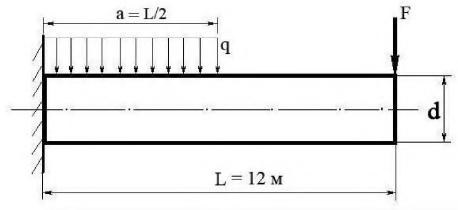
(Ответ: максимальное касательное напряжение в брусе - 25 МПа, что меньше предельно допустимого, т.е. брус выдержит заданную нагрузку

Тема 1.10. Движение материальной точки Проверяемые результаты обучения: У2, З3, З4, ОК1, ОК4, ПК 1.1 Решить задачи:

Задача №1

Построить эпюру изгибающих моментов и выполнить расчет бруса на прочность, при условии, что предельно допустимое нормальное напряжение при изгибе: $[\sigma] \le 100 \text{ M}\Pi a$. Вес бруса не учитывать.

Изгибающий	Поперечная	Длина бруса	Диаметр бруса
момент	сила	L	Ф
Mu	$m{F}$		
25 Нм	250 H	12 м	8 см


Задача 2

Построить эпюру изгибающих моментов и выполнить расчет круглого бруса на прочность, при условии, что предельно допустимое нормальное напряжение при изгибе: $[\sigma] \le 100 \text{ M}\Pi a$.

Поперечная сила F	Распределенная нагрузка	Диаметр бруса d	
	q		
100 H	20 Н/м	10 см	

Построить эпюру изгибающих моментов и выполнить расчет бруса на прочность, при условии, что предельно допустимое нормальное напряжение при изгибе: $[\sigma] \le 100$ МПа. Брус считать невесомым.

Распределенная	Поперечная	Диаметр
нагрузка	сила	бруса
\boldsymbol{q}	$oldsymbol{F}$	d
100 Н/м	200 H	15 см

Тема 1.11. Трение

Проверяемые результаты обучения: У2, У3, 31, 32, ОК3, ПК 1.1, ПК1.2 Ответить на тестовые задания:

- .1 Электровоз, двигаясь равномерно, тянет железнодорожный состав силой 150 кН. Сила трения в этом случае равна:
- a) 150 kH +
- б) 130 кН
- в) 20 кH
- 2. В гололед тротуары и дороги часто посыпают песком. Что происходит с силой трения подошв обуви о лед:
- а) уменьшается
- б) увеличивается +
- в) не изменяется
- 3. Может ли тело находиться в движении при условии, что действующая на него сила равна силе трения:
- а) такое тело может только покоиться
- б) может, но скорость его будет уменьшаться
- в) тело может покоиться или двигаться прямолинейно и равномерно +
- 4. Чем больше масса тела, перемещающегося по горизонтальной поверхности, тем:
- а) меньше сила трения
- б) больше сила трения +
- в) без разницы
- 5. При ударе, футбольный мяч отлетает под действием этой силы После падения на землю, он останавливается за счет этой силы ...:
- а) тяжести, трения

- б) трения, тяжести
- в) упругости, трения +
- 6. Шурупы смазывают мылом при закручивании. Сила трения:
- а) не изменяется
- б) уменьшается +
- в) увеличивается
- 7. Укажите причину, влияющую на силу трения:
- а) природа трущихся поверхностей +
- б) силы, отталкивающие соприкасающиеся поверхности друг к другу
- в) материал поверхностей
- 8. Укажите причину, влияющую на силу трения:
- а) материал трущихся поверхностей
- б) шероховатость соприкасающихся поверхностей +
- в) силы, отталкивающие соприкасающиеся поверхности друг к другу
- 9. Укажите причину, влияющую на силу трения:
- а) материал трущихся поверхностей
- б) год производства трущихся поверхностей
- в) силы, прижимающие соприкасающиеся поверхности друг к другу +
- 10. Во время движения электродвигатель трамвая развивает силу тяги 30 кН. Сила трения при равномерном движении трамвая равна:
- a) 150 кH
- б) $30 \, кH +$
- в) 50 кН
- 11. Какой коэффициент характеризует силу трения между различными поверхностями:
- а) торможения
- б) скольжения
- в) трения +
- 12. Сила трения зависит от силы ... тел друг на друга:
- а) соприкосновения
- б) давления +
- в) тяжести
- 13. Как называется величина, которая характеризует трущиеся поверхности:
- а) коэффициентом трения +
- б) массой трения
- в) сопротивлением
- 14. По физике, взаимодействия трение скольжения делят на:
- а) влажное
- б) липкое
- в) cyxoe +
- 15. По физике, взаимодействия трение скольжения делят на:
- а) жидкостное +
- б) влажное
- в) твердое

- 16. По физике, взаимодействия трение скольжения делят на:
- а) твердое
- б) смешанное +
- в) влажное
- 17. Силой трения называют:
- а) силу взаимодействия поверхностей тел, которая препятствует их относительному движению +
- б) силу взаимодействия между телами
- в) силу взаимодействия между телами, которая останавливает движущееся тело
- 18. Сила трения возникает:
- а) только потому что поверхности тел шероховатые
- б) потому что шероховатости поверхностей тел зацепляются друг за друга, а молекулы, находящиеся на поверхностях, притягиваются +
- в) потому что по закону всемирного тяготения тела притягиваются друг к другу
- 19. Необходимо указать вид силы трения:
- а) трения движения
- б) трения хождения
- в) трения скольжения +
- 20. Необходимо указать вид силы трения:
- а) трения покоя +
- б) трения хождения
- в) трения движения
- 21. Необходимо указать вид силы трения:
- а) трения движения
- б) трения хождения
- в) трения качения +
- 22. Наименьшая сила трения возникает при этом виде трения тел:
- а) в случае трения скольжения
- б) при трении качения +
- в) при трении покоя
- 23. Трение можно уменьшить таким образом:
- а) прижать тела друг к другу, отполировать поверхности
- б) смазать поверхности соприкасающихся тел, отполировать поверхности
- в) смазать поверхности соприкасающихся тел, сгладить поверхности +
- 24. Укажите, когда трение вредно:
- а) нож режет овощи +
- б) конвейер перемещает детали
- в) автомобиль едет по скользкой дороге
- 25. Укажите, когда трение полезно:
- а) работы механизмов с движущимися частями
- б) движения по песку
- в) шитья одежды +

- 26. Сани скатываются с горы под действием силы ..., а, скатившись, останавливаются за счет силы...:
- а) трения, тяжести
- б) тяжести, трения +
- в) упругости, трения
- 27. Что происходит с силой трения при смазке трущихся поверхностей:
- а) уменьшается +
- б) увеличивается
- в) не изменяется
- 28. При равных нагрузках сила трения скольжения всегда ... силе (силы) трения качения:
- а) меньше
- б) больше +
- в) равна
- 29. Два бильярдных шара, столкнувшись, отталкиваются друг от друга за счет этой силы Затем они останавливаются за счет этой силы ...:
- а) упругости, трения +
- б) трения, упругости
- в) трения, тяжести
- 30. В машинах с ременной передачей, ремень часто натирают канифолью. При этом сила трения ремня о шкив:
- а) уменьшается
- б) не изменяется
- в) увеличивается +

Раздел 2. Сопротивление материалов

Тема 2.1. Основные положения

Проверяемые результаты обучения: УЗ, 34, ОК8, ПК 3.2

Ответить на вопросы письменно:

- 1. Перечислите основные задачи науки о сопротивлении материалов. Что такое прочность, жесткость, устойчивость?
- 2. Перечислите основные гипотезы и допущения, принимаемых в расчетах сопротивления материалов и поясните суть. Сформулируйте принцип Сен-Венана.
- 3. Перечислите основные виды нагрузок и деформаций, возникающих в процессе работы машин и сооружений.
- 4. В чем заключается метод сечений, используемый при решении задач теоретической механики и сопротивления материалов?

Тема 2.2. Растяжение и сжатие

Проверяемые результаты обучения: У3, 33, 34, ОК1, ОК2, ОК9, ПК 3.2

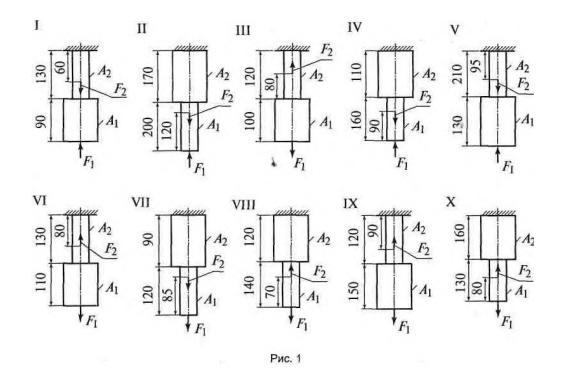
Практическая работа * Методика расчета на прочность

Цель: Формирование умений использовать условия прочности при растяжении и сжатии стержней при подборе их диаметров. Задание 1.

Для конструкции и эпюры внутренних сил, построенных при выполнении практической работы № 5, материал — бронза, $[\sigma] = 70$ МПа, запас прочности [s] = 1,5.

Задание 2

1. Установить опасное сечение бруса и записать условие прочности. Задание 3.


Определить размеры постоянного поперечного сечения бруса в форме квадрата, круга, прямоугольника, приняв h/b=2,0;

Контрольные вопросы

- 1. Какие внутренние силовые факторы возникают в сечении бруса при растяжении и сжатии?
- 2. Как распределяются по сечению силы упругости при растяжении и сжатии?
- 3. Какого характера напряжения возникают в поперечном сечении при растяжении и сжатии: нормальные или касательные?
- 4. Как распределены напряжения по сечению при растяжении и сжатии?
- 5. Запишите формулы для расчета нормальных напряжений при растяжении и сжатии.
- 6. Перечислите характеристики прочности.
- 7. В чем различие между предельным и допускаемым напряжениями?
- 8. Запишите условие прочности при растяжении и сжатии. Отличаются ли условия прочности при расчете прочности на растяжение и расчете на сжатие?

Практическая работа Определение нормальной силы, нормальное напряжение и полного удлинение трехступенчатого бруса Цель работы: научиться строить эпюры продольных сил и нормальных напряжений, определять размеры поперечных сечений ступенчатого бруса, нагруженного растягивающими силами. ЗАДАНИЕ.

Двухступенчатый брус, длины ступеней которого указаны на рис. 1, нагружен силами F1 и F2. Построить эпюры продольных сил и нормальных напряжений по длине бруса. Определить удлинение (укорочение) бруса, приняв E = 2 • 105 МПа.

Контрольные вопросы:

- 1. Какие силовые факторы могут возникать в поперечном сечении бруса и какие виды деформаций они вызывают? Что такое эпюра?
- 2. Что такое напряжение и в каких единицах оно измеряется? В чем принципиальное отличие напряжения от давления?
- 3.Сформулируйте гипотезу о независимости действия сил (принцип независимости действия сил) и поясните ее сущность.
- 4. Сформулируйте закон Гука при растяжении и сжатии и поясните его смысл. Что такое модуль продольной упругости?

Практическая работа Определение модуля Юнга и коэффициента Пуассона для стали.

Цель работы:

- 1. Проверить в пределах упругости линейность связи деформации и нагрузки.
- 2. Определить числовые значения упругих постоянных E (модуля упругости первого рода) и μ (коэффициента Пуассона) для стали.
 - 3. Выяснить при этом физический смысл этих постоянных.

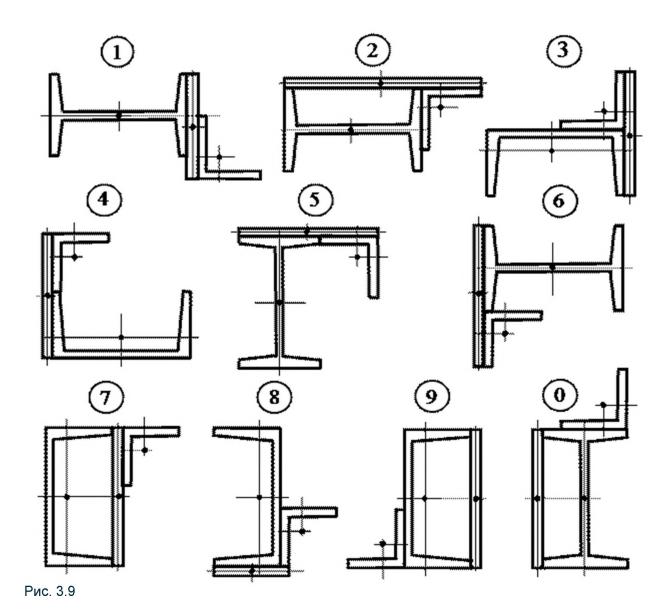
Задание 1. Проверить в пределах упругости линейность связи деформации и нагрузки.

Задание 2. Определить числовые значения упругих постоянных E (модуля упругости первого рода) и μ (коэффициента Пуассона) для стали.

Задание 3. Выяснить при этом физический смысл этих постоянных.

Контрольные вопросы:

- 1. Пояснить диаграмму растяжения. Что называется пределами упругости, пропорциональности, текучести, прочности?
- 2.В чем заключается принцип суперпозиции деформаций? Справедлив ли он для всей диаграммы растяжения?
- 3. Пояснить физический смысл модуля Юнга, используя диаграмму растяжения. Для какого участка диаграммы модуль Юнга постоянен?
- 4.Оцените отклонение от закона пропорциональности в данном эксперименте, используя формулу (2).
- 5. Какую ошибку вносят приближения


Тема 2.3. Практические расчеты на срез и смятие Проверяемые результаты обучения: У3, 31, ОК1, ОК2, ОК3, ОК4, ПК 1.2 **Ответить на вопросы**

- 1. При каком нагружении прямой брус испытывает деформацию кручения?
- 2. Какое правило знаков принято для крутящих моментов?
- 3. Что называется углом закручивания?
- 4. Как выражается закон Гука при кручении?
- 5. По каким формулам можно определить модуль упругости второго рода?
- 6. Как опытным путем определяется модуль упругости второго рода?
- 7. Как экспериментально определяется угол закручивания образца? Какие измерительные приборы и приспособления при этом применяются?
- 8. Что называется жесткостью поперечного сечения бруса при кручении? Размерность жесткости поперечного сечения.
- 9. Какие факторы влияют на величину угла закручивания?
- 10.По какой формуле определяется полярный момент сопротивления для круглого вала сплошного сечения и для вала кольцевого сечения?

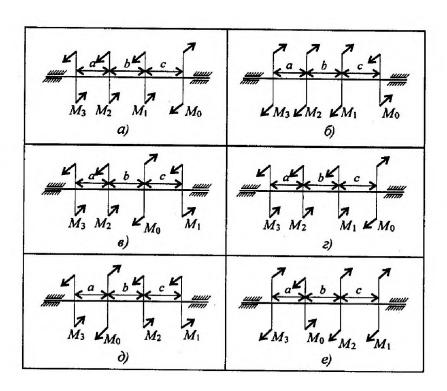
Тема 2.4. Геометрические характеристики плоских сечений **Проверяемые результаты обучения:** У3, 31, 32, ОК3, ПК 1.1, ПК1.2, ПК 3.2 **Решить задачи:**

1.Для составного поперечного сечения стержня, состоящего из равнобокого уголка № 7 с толщиной стенки 8 мм, швеллера № 22 и полосы 180′20 мм (рис. 3.10), требуется найти положение центра тяжести сечения, направление главных центральных осей инерции и и v, а также вычислить главные центральные моменты инерции $I_{\text{мых}}$ I_{min} .

2. Варианты расчетных схем к задаче "геометрические характеристики плоских сечений" для самостоятельного решения

Варианты исходных данных к задаче для самостоятельного решения "геометрические характеристики плоских сечений"

Таблица 3.5


	Номер	Номер	Размеры	Толщина		
Номер схемы (рис. 3.9)						
	швеллер	адвутавр	ауголка	листа, мм		
1	24	12	100×100×8	12		
2	22	14	100×100×1	012		
3	20	16	100×100×1	212		
4	18	18	100×100×8	14		
5	16	20	100×100×1	014		
6	14	22	100×100×12	214		
7	12	24	100×100×8	16		
8	24	22	100×100×10	016		
9	22	20	100×100×12	216		
0	20	18	100×100×8	10		

Тема 2.5. Кручение

Проверяемые результаты обучения: У1, У3, 31, 32, ОК1, ОК2, ОК3, ОК4, ОК5, ОК6, ПК 1.1, ПК1.2

Выполнить задания по вариантам при решении задач

- 1. Для стального вала круглого поперечного сечения определить значения внешних моментов, соответствующих передаваемым мощностям, и уравновешенный момент.
- 2.Построить эпюру крутящих моментов по длине вала. Рациональным расположением шкивов на валу добиться уменьшения значения максимального крутящего момента на валу.
- 3. Построить эпюру крутящих моментов для этого случая. Дальнейшие расчеты вести для вала с рациональным расположением шкивов.
- 4. Определить диаметры вала по сечениям из расчетов на прочность и жесткость. Полученный больший результат округлить до ближайшего четного или оканчивающегося на 5 числа.
- 5. При расчете использовать следующие данные: вал вращается с угловой скоростью 25 рад/с; материал вала сталь, допускаемое напряжение кручения 30 МПа, модуль упругости при сдвиге 8· 104 МПа допускаемый угол закручивания $[\varphi_0] = 0,02$ рад/м.
- 6. Провести расчет для вала кольцевого сечения, приняв c = 0.9.
- 7. Сделать выводы о целесообразности выполнения вала круглого или кольцевого сечения, сравнив площади поперечных сечений.

Параметр Вариант

Рис. а б в г д е а б в г

Тема 2.7 Изгиб

Проверяемые результаты обучения: У1, У3, З3, З4, ОК1, ОК2, ОК3, ОК6, ОК7, ОК8, ОК9, ПК 1.1

Решить задачи:

- 1.Построить эпюры поперечных сил и изгибающих моментов для двухопорной балки с консолью
- 2. Построить эпюры Q и M для двухпролетной балки с промежуточным шарниром
- 3. Подобрать размеры нижеобозначенных форм сечений балки и сопоставить коэффициенты их экономичности. Для прямоугольного сечения принять h/b = 1.4.

Расчетные сопротивления материала балки $R = 210 \ M\Pi a, \ R_s = 130 \ M\Pi a$

Тема 2.7. Гипотезы прочности и их назначение

Проверяемые результаты обучения: У1, 34, ОК5, ОК6, ОК7, ОК8, ОК9, ПК 1.1 **Ответить на вопросы:**

- 1. Что такое сложное сопротивление стержней?
- 2. Какие виды деформации бруса называют сложным со противлением?
- 3. Сформулируйте принципы, на которых строится расчет брусьев при сложном сопротивлении?
- 4.В чем заключается принцип независимости действия сил?
- 5.Опишите методику определения компонентов внутренних сил при сложном сопротивлении?
- 6.Получите формулу нормальных напряжений при сложном сопротивлении?
- 7. Дайте определение нулевой линии и опишите способы ее построения и эпюры нормальных напряжений при сложном сопротивлении?
- 8. Какие внутренние усилия возникают в стержне в наиболее общем случае сложного сопротивления?
- 9. Какой изгиб называется косым?

- 10. Когда возникает косой изгиб? Опишите порядок расчета брусьев при косом изгибе?
- 11. Сочетанием каких видов изгиба является косой изгиб?
- 12.К каким равнодействующим приводятся внутренние силы при косом изгибе
- 13.По каким формулам определяются нормальные напряжения в попере чных сечениях балки при косом изгибе?
- 14. Как находится положение нейтральной оси при косом изгибе?
- 15. Как определяются опасные точки в сечении при косом изгибе?
- 16. Как определяются перемещения точек оси балки при косом изгибе?

Раздел 3 Детали машин

Тема 3.1 Основные положения

Проверяемые результаты обучения: 31, 33, 34, ОК2, ОК4, ОК5, ОК6, ПК 3.2 Ответить на вопросы:

- 1. Что такое критерий работоспособности детали? Назовите основные критерии работоспособности и расчета деталей машин.
- 2.Перечислите наиболее распространенные в машиностроении типы разъемных и неразъемных соединений деталей.
- 3. Достоинства и недостатки клепаных соединений. Перечислите основные типы заклепок по форме головок. Как производится расчет на прочность клепаных соединений?
- 4. Достоинства и недостатки сварочных соединений. Виды сварки. Как производится расчет на прочность сварочных соединений?

Тема 3.2. Основные сведения о передачах

Проверяемые результаты обучения: 31, 32, ОК1, ОК2, ОК9, ПК 3.2

Ответить на вопросы:

- 1.Классификация и основные типы резьбы. Как производится расчет на прочность резьбовых соединений?
- 2. Что такое механическая передача? Классификация механических передач по принципу действия.
- 3Основные кинематические и силовые соотношения в механических передачах. Что такое механический КПД передачи, окружная скорость, окружная сила, вращающий момент, передаточное число?
- 4.Классификация зубчатых передач. Достоинства и недостатки зубчатых передач.

Тема3.3Фрикционные и ременные передачи

Проверяемые результаты обучения: У2, У3, 31, ОК1, ОК2, ОК3, ОК7, ОК8, ОК9, ПК 3.2

Решить задачи:

Задача 1 Рассчитать передачу зубчатым ремнем от электродвигателя к редуктору привода ленточного конвейера. Требуемая мощность

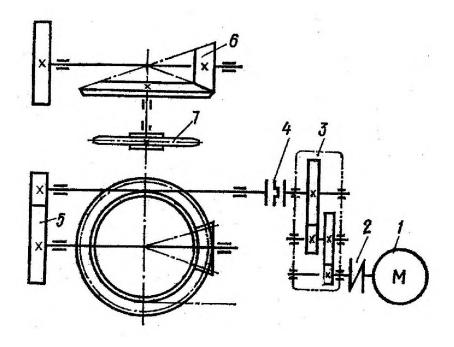
электродвигателя P_1 =5,2 кВт при n_1 =2880 мин⁻¹. Передаточное число ременной передачи u=4,03. Характер нагрузки — спокойная, работа двухсменная.

Задача 2. Определить диаметр ведущего шкива d, открытой ременной передачи без натяжного ролика: межосевое расстояние α =770 мм, угол обхвата $\alpha = 144^{\circ}$, передаточное число u=3,7. полученное значение округлить до стандартного

Задача 3. Коэффициент трения между ремнем и шкивом f, угол обхвата малого шкива α . Вычислить коэффициент тяги ременной передачи. Дано: f = 0.34, $\alpha = 162^{\circ}$.

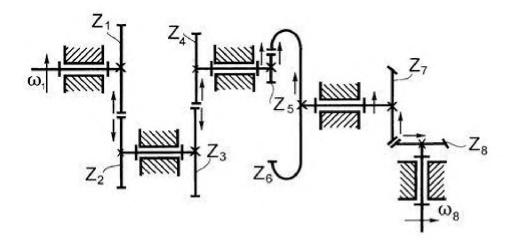
Задача 4 Передаваемая мощность клиноременной передачи p_1 , число ремней z, диаметр ведущего шкива d_1 , частота его вращения n_5 , натяжение ведомой ветви p_4 поперечное сечение одного ремня A. определить предварительное натяжение

ремня F_0 . Дано: $P_1 = 5 \text{ кВт}$; z = 3 шт.: $d_1 = 200 \text{ мм.}$: $n_1 = 960 \text{ мин}^{-1}$; $F_2 = 74 \text{ H}$: $A = 138 \text{ мм}^2$.


Задача 5. Полезная нагрузка клиноременной передачи $F_{r_{i}}$ число ремней z, коэффициент числа ремней $C_{z_{i}}$ угол обхвата ведущего шкива α , дуга упругого скольжения α_{1} приведенный коэффициент трения между ремнем и шкивом f. Определить давление ремней на шкивы.

 Π_{aho} : $F_t = 700 H$: z = 3: $C_z = 0.95$: $\alpha = 148^\circ$: $\alpha_1 = 128^\circ$: f' = 0.46.

Тема 3.4 Зубчатые и цепные передачи


Проверяемые результаты обучения: У3, 31, 33, ОК3, ОК4, ОК8, ОК9, ПК 3.2 **Решить задачи:**

Задача 1.Приводная станция подвесного конвейера (рис. 71) состоит из электродвигателя I, муфт 2 и 4, двухступенчатого редуктора 3, цилиндрической и конической зубчатых передач 5, 6 и звездочки для тяговой цепи 7. Подобрать электродвигатель, разбить общее передаточное число привода по ступеням и рассчитать быстроходную зубчатую передачу редуктора при условии, что окружное усилие на звездочке F_t =25 κH , скорость цепи V=0,5 м/с, шаг цепи t=32 m, число зубьев звездочки t=20.

Задача 2

Определить передаточное отношение зубчатой передачи (рис. 19), число оборотов ведомого вала и общий коэффициент полезного действия (кпд), если количества зубьев колес равны: z_1 =30, z_2 =20, z_3 =45, z_4 =30, z_5 =20, z_6 =120, z_7 =25, z_8 =15; число оборотов ведущего вала n_1 =1600 об/мин.

Задача 3 Для редуктора Давида определить передаточное отношение u_{B-1} при $z_1=z_2=100,\ z_2=99,\ z_3=101,$

Задача 4

Выходное звено механизма, показанного на схемах (рис. 23–32), совершает возвратно-поступательное (или возвратно-вращательное) движение и нагружено на рабочем ходу постоянной силой F_c (или моментом T_c) полезного сопротивления. На холостом ходу, при обратном направлении движения выходного звена, полезное сопротивление отсутствует, но продолжают действовать вредные. Учитывая действие трения в кинематических парах, по коэффициенту полезного действия механизма необходимо определить:

- 1) движущий момент T_{∂} , постоянный по величине, который нужно приложить к входному звену при установившемся движении с циклом, состоящим из рабочего и холостого ходов;
- 2) работы сил трения на рабочем и холостом ходах, считая, что вредное сопротивление постоянно на каждом из ходов, но на рабочем ходу оно в три раза больше, чем на холостом;
- 3) изменение кинетической энергии механизма за время рабочего хода и за время холостого хода;

Тема3.5 Передача «винт-гайка»

Проверяемые результаты обучения: У3, 31, 33, ОК3, ОК4, ОК8, ОК9, ПК 3.2 **Решить задачи:**

Задача 1. Рассчитать основные параметры ручного домкрата (рисунок 7.12) грузоподъемностью $Q=50\,$ кН. Длина винта $l_0=500\,$ мм, его материал — сталь 45, материал гайки — серый чугун СЧ18. Резьба трапецеидальная. Задача 2 Определить передаточное отношение между входными и выходными звеньями и каждой передачи в отдельности; угловую скорость, число оборотов, мощность и крутящий момент каждого вала; общий коэффициент полезного действия двухступенчатой передачи, изображенной на рисунке 8.11. Числа зубьев колес соответствующих передач: $z_1=20; z_2=100;$

$$z_3 = 24$$
; $z_4 = 96$;

к.п.д. зубчатой цилиндрической передачи $\eta_u = 0,97$; к.п.д., учитывающий потери в опорах одного вала, $\eta_n = 0,99$; полезная мощность, подводимая к первому валу P = 10 кВт; скорость вращения первого вала

$$\omega_l = 100 \ c^{-l}.$$

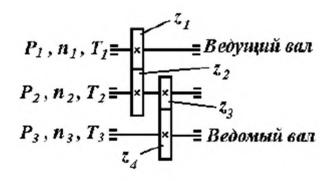
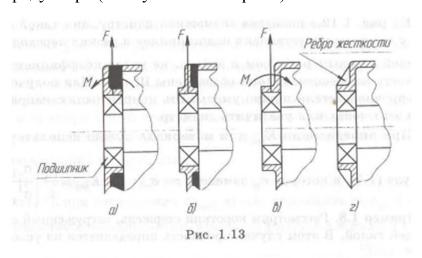



Рисунок 8.11

Задача 2 Разработать конструкцию двухопорной балки минимальной массы нагруженной силой *F* и сравнить ее с массой консольной

Задача 3 Проанализировать, как правильно выбрать расположения стенки корпуса относительно кольцевых гнезд под подшипники (рис. 1.13). На корпус от подшипника передается сила \mathbb{F} . При смещении стенки влево возрастает моментная нагрузка \mathbb{F} на нее, увеличивается наружная поверхность корпуса редуктора (этот участок зачернен) и масса

Тема 3.6 Червячная передача Проверяемые результаты обучения: У3, 31, 33, ОК3, ОК4, ОК8, ОК9, ПК 3.2 **Решить задачи:**

Задача 1 Сравнить значение и соотношение КПД двух червячных передач с одинаковыми можосевыми расстояниями и модулем, если коэффициенты трения в зацеплениях одинаковы f = 0.05, а числа витков у одной передачи $z_1 = 1$, а у другой $z_1 = 4$. Червяки имеют одинаковые делительные диаметры, соответствующие q = 16.

Задача 2. Возможно ли использование червячной передачи в режиме мультипликатора, если её геометрические и кинематические параметры

составляют: число витков червяка $z_1 = 4$; число зубьев колеса $z_2 = 48$; q = 16; модуль m = 4мм. Коэффициент трения в зацеплении f = 0.065. Найти значение КПД и частоту вращения червяка, если колесо вращается с частотой 180 мин⁻¹

Задача 3. Зубчатый венец червячного колеса изготовлен из бронзы брАЖ9-4 ГОСТ 18175-72. Каково предельное значение частоты вращения червяка n_1 , если допускаемое контактное напряжение $[\sigma_{_{\rm H}}]$ =100 МПа? Геометрические параметры червяка, имеющего закаленные и шлифованные витки: m = 6,3 мм; $q = 16 \cdot z_1 = 4$

Задача 4 Определить момент на колесе червячной передачи со следующими параметрами: число витков червяка $z_1 = 2$; q = 16; модуль m = 4мм; межосевое расстояние $a_w = 180$ мм, если момент на червяке $T_1 = 100$ Нм, коэффициент трения f = 0.09.

Тема3.7 Валы и оси

Проверяемые результаты обучения: У3, 31, 33, ОК3, ОК4, ОК8, ОК9, ПК 3.2 **Ответить на тесты:**

Задание 1

Валы предназначены для...

- 1) передачи крутящего момента и поддержания вращающихся деталей
- 2) поддержания вращающихся деталей машин
- 3) соединения различных деталей
- 4) обеспечения синхронности работы отдельных деталей машин

Задание 2

Валы передач работают на...

- 1) изгиб и кручение
- 2) изгиб и растяжение
- 3) изгиб и сжатие
- 4) изгиб

Задание 3

Основными критериями работоспособности валов являются...

- 1) прочность, жесткость
- 2) прочность, долговечность
- 3) прочность, грузоподъемность
- 4) жесткость, виброустойчивость

Задание 4

Этапы расчета валов называют...

1) проектный, проверочный

- 2) проектный, ориентировочный
- 3) проверочный, плоскостной
- 4) проверочный, ориентировочный

Задание 5

При проектном расчете вала...

- 1) определяют диаметр конца вала
- 2) производят расчет на статическую прочность
- 3) производят расчет на выносливость
- 4) производят расчет на жесткость

Задание 6

При проектном расчете диаметр конца вала определяют из условия прочности на...

- 1) кручение
- 2) изгиб
- 3) изгиб и кручение
- 4) cpe3

Задание 7

Осевой момент сопротивления сплошного круглого <u>сечения</u> определяют по формуле...

- 1) $0.1d^3$
- $2) 0.2d^3$
 - **@**|²
- $\frac{}{4}$

Задание 8

Полярный момент сопротивления сплошного круглого сечения определяют по формуле...

- 1) $0.1d^3$
- 2) $0.2d^3$
 - **Q** 2
- 3) 4

Задание 9

Проверочный расчет вала на статическую прочность заключается в определении...

- 1) коэффициента запаса прочности
- 2) эквивалентного напряжения
- 3) напряжения изгиба
- 4) напряжения кручения

Задание 10

Проверочный расчет вала на выносливость заключается в определении...

1) коэффициента запаса прочности

- 2) эквивалентного напряжения
- 3) напряжения изгиба
- 4) напряжения кручения

Задание 11

Параметрами, характеризующими жесткость вала являются...

- 1) прогиб вала
- 2) угол наклона поперечного сечения вала
- 3) напряжение изгиба
- 4) напряжение кручения

Критерии работоспособности и расчета осей

Задание 1

Оси предназначены для...

- 1) передачи крутящего момента и поддержания вращающихся деталей
- 2) для поддержания вращающихся деталей машин
- 3) обеспечения синхронности работы отдельных деталей машин

Задание 2

Основными критериями работоспособности осей являются...

- 1) прочность, жесткость
- 2) прочность, долговечность
- 3) прочность, грузоподъемность
- 4) жесткость, виброустойчивость

Задание 3

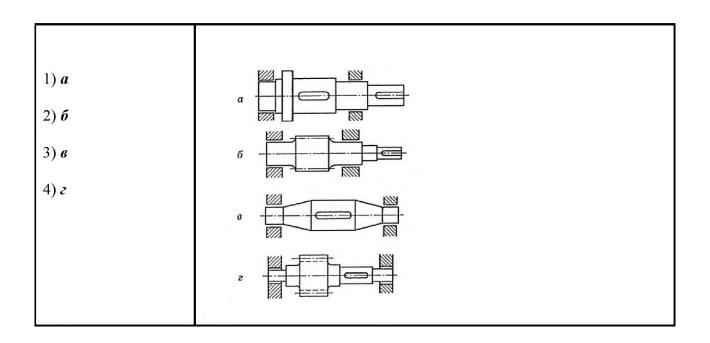
Оси работают на...

- 1) изгиб
- 2) изгиб и кручение
- 3) изгиб и сжатие
- 4) изгиб и растяжение

Задание 4

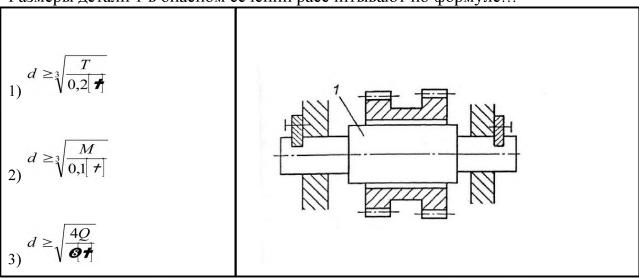
Факторами, влияющими на жесткость осей являются...

- 1) предел прочности $\sigma_{\text{в}}$
- 2) предел текучести $\sigma_{\rm T}$
- 3) модуль упругости Е
- 4) осевой момент инерции Ј

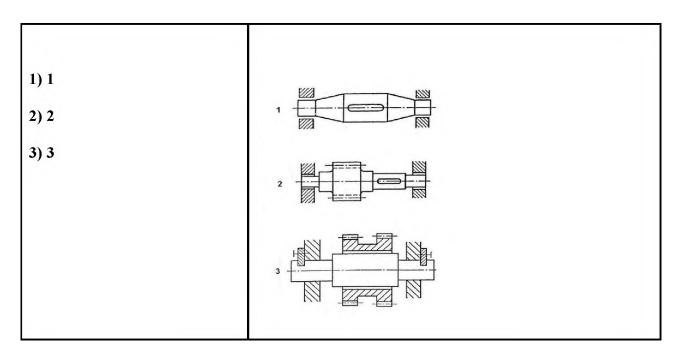

Задание 5

Расчет на выносливость для осей является...

- 1) проверочным
- 2) проектировочным
- 3) проектировочным и проверочным


Задание 6

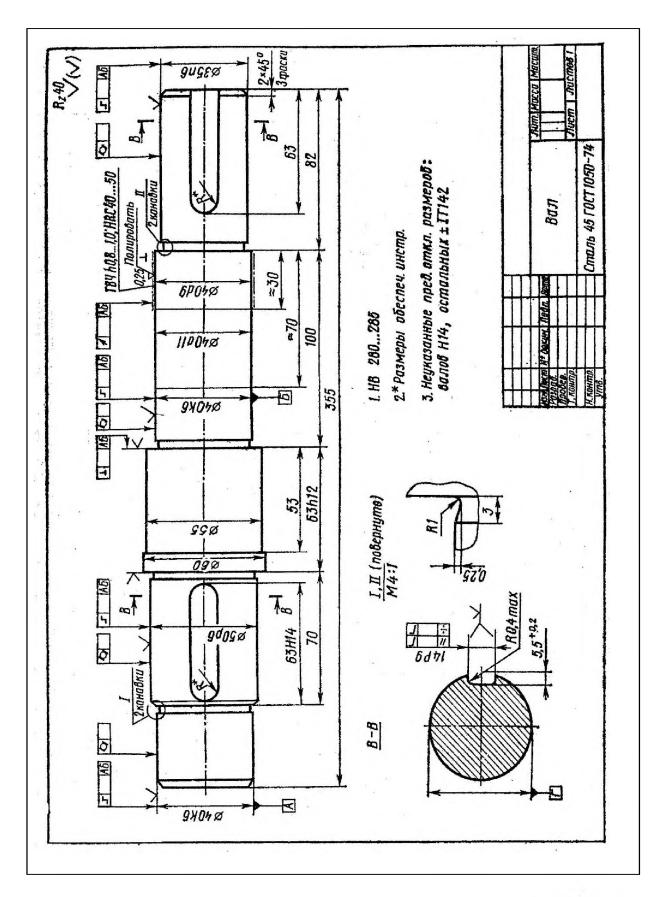
Вращающаяся ось изображена на рисунке...



Задание 7

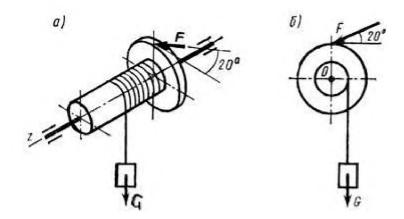
Размеры детали 1 в опасном сечении рассчитывают по формуле...

Задание 8 Невращающаяся ось изображена на рисунке...


Тема 3.8Подшипники

Проверяемые результаты обучения: УЗ, З1, З3, ОК3, ОК4, ОК8, ОК9, ПК З.2 **Решить задачи:**

Задача 1 Рассчитать тихоходный вал двухступенчатого редуктора (рис. 71), если при расчете зубчатой передачи получили исходные данные: модуль зубчатого колеса m=4 мм, число зубьев z=72, ширина венца колеса b=65 мм,


 $n=\frac{n_{_3}}{u_{_1}u_{_2}}=\frac{2940}{2\cdot 4}=367,5$ частота вращения вала об/мин или угловая скорость $\omega=38,5$ рад/с, передаваемая мощность $N=N_{_3}\eta_{_{_1p}}^2\eta_{_n}^3=20\cdot 0,96^2\cdot 0,99^3=17,8$ кВт. Подобрать для этого вала подшипники качения. Выполнить эскиз вала.

Задача 2 ля механизма привода конвейера рассчитать тихоходный вал, на котором установлена звездочка и коническое колесо, рис. 71. Исходные данные взять из полученных ранее промежуточных решений примеров Д 3-1 и Д 3-2: передаваемая мощность N=12,5 кВт; радиус звездочки $R_{36}=101,9$ мм; угловая скорость звездочки $\omega_{36}=4,91$ 1/c; угол делительного конуса конического колеса $\phi=73,39^{\circ}$; средний диаметр колеса $d_c=m_cz=434,7\cong435$ мм.

Задача 3 Барабан лебедки (рис. 1, а) диаметром $d_{\delta} = 0.14$ м и приводится в равномерное вращение с помощью зубчатого колеса расчетным диаметром d = 0.25 м, на зуб которого действует расположенная в плоскости

колеса сила F = 6 кH. Пренебрегая весом частей механизма, а также трением в подшипниках и на барабане, определить грузоподъемную силу лебедки.

Тема 3.9 Соединение деталей

Проверяемые результаты обучения: У3, 31, 33, ОК3, ОК4, ОК8, ОК9, ПК 3.2 Ответить на вопросы теста:

Мощность механической передачи определяется по формуле ...

- 1) $P = \frac{F_c}{v}$
- 2) $P = \frac{\tau}{\omega}$
- 3) $P = F_t v$
- 4) P = Tn
- КПД механической передачи определяется по формуле ...
 - $1)^{\eta = \frac{\bar{P}_1}{\bar{P}_2}}$
 - $2) \eta = P_2 P_1$
 - $3) \eta = \frac{p_1 p_2}{p_1}$
 - $4)^{\eta = \frac{p_2}{p_1}}$
- Механическая передача является повышающей и называется мультипликатором при ...
 - 1) u < 1, $n_1 < n_2$
 - 2) u>1, $n_1>n_2$
 - 3) u>1, $n_1 < n_2$
 - 4) u < 1, $n_1 > n_2$
- Механическая передача является понижающей и называется редуктором при ...
 - 1) u < 1, $n_1 < n_2$
 - 2) u < 1, $n_1 > n_2$
 - 3) u>1, $n_1 < n_2$
 - 4) u>1, $n_1>n_2$

- Коэффициент полезного действия (КПД) механического привода	ì
определяется по формуле	

$$1) \eta = 1 - \eta_1 \cdot \eta_2 \cdot ... \cdot \eta_n$$

$$2) \eta = \eta_1 + \eta_2 + \dots + \eta_n$$

3)
$$\eta = 1 - (\eta_1 + \eta_2 + \cdots + \eta_n)$$

4)
$$\eta = \eta_1 \cdot \eta_2 \cdot \dots \cdot \eta_n$$

- Наиболее высокий КПД имеет ... передача.
 - 1) зубчатая коническая
 - 2) цепная
 - 3) червячная
 - 4) ременная
 - 5) зубчатая цилиндрическая
- К механическим передачам зацеплением относятся ...
 - 1) зубчатые, волновые, клиноременные
 - 2) зубчатые, фрикционные, червячные
 - 3) зубчатые, цепные, червячные, планетарные
 - 4) зубчатые, червячные, ременные, фрикционные
- К механическим передачам трением относится ...
 - 1) червячная
 - 2) клиноременная
 - 3) волновая зубчатая
 - 4) планетарная
 - 5) винтовая
- Большее передаточное отношение имеет ... передача.
 - 1) коническая зубчатая
 - 2) ременная
 - 3) цепная
 - 4) цилиндрическая зубчатая
 - 5) червячная
- В механическом приводе быстроходной называется передача ...
 - 1) расположенная ближе к двигателю
 - 2) расположенная ближе к рабочем органу привода
 - 3) открытая
 - 4) закрытая
- Передаточное отношение механической передачи определяют по формуле...

$$1)^{i=\frac{n_1}{n_2}}$$

$$2) i = n_1 + n_2$$

$$3) i = \frac{F_1}{F_2}$$

- 4) $i = n_1 n_2$
- Опишите взаимное положение валов в передаче 10—11, см. рис. 16
 - 1. Передача с параллельными осями валов
 - 2. Передача с пересекающимися осями валов
 - 3. Передача с перекрещивающимися осями валов
 - 4. Определить нельзя
- Показать на рис. 16 червячную передачу
 - 1. Поз. 2-3
 - 2. Поз. 4-5
 - 3. Поз. 6-7
 - 4. Поз. 10-11
 - 5. Поз. 12-13
 - Какое назначение механических передач
 - 1. Вырабатывать энергию
 - 2. Воспринимать энергию
- 3. Затрачивать энергию на преодоление внешних сил, непосредственно связанных с процессом производства
 - 4. Преобразовывать скорость, вращающий момент, направление вращения
- Как классифицируют зубчатую передачу по принципу передачи движения?
 - 1. Трением
 - 2. Зацеплением
- 3. Непосредственно контактом деталей, сидящих на ведущем и ведомом валах
 - 4. Передача гибкой связью
- Покажите на рис. 16 ведущее колесо третьей пары
 - 1. Поз. 3
 - 2. Поз. 4
 - 3. Поз. 5
 - 4. Поз. 6
 - 5. Поз. 7
- Передача 4—5 (см. рис. 16) понижающая или повышающая?
 - 1. Понижающая
 - 2. Повышающая
- Сколько ступеней имеет передача, показанная на рис. 16?
 - 1) 1
 - 2) 2
 - 3)6

- Какое из приведенных отношений называют передаточным числом одноступенчатой передачи?
 - 1) n_2/n_1
 - 2) D_2/D_1
 - 3) D_1/D_2

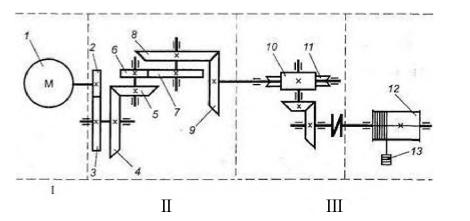
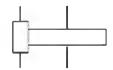
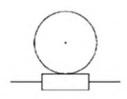



Рис. 16. Кинематическая схема многоступенчатой передачи

IV


- Как называется передача, кинематическая схема которой показана на рисунке?

- 1. Цилиндрическая
- 2. Коническая
- 3. Червячная
- 4. Планетарная
- Как называется передача, кинематическая схема которой показана на рисунке?

- 1. Цилиндрическая
- 2. Коническая
- 3. Червячная
- 4. Планетарная
- Как называется передача, кинематическая схема которой показана на рисунке?

- 1. Цилиндрическая
- 2. Коническая
- 3. Червячная
- 4. Планетарная
- Какая передача может использоваться для передачи вращения между валами, оси которых пересекаются?
 - 1. Коническая
 - 2. Червячная
 - 3. Цилиндрическая
 - 4. Гипоидная
- Какая передача может использоваться для передачи вращения между валами, оси которых параллельны?
 - 1. Цилиндрическая
 - 2. Червячная
 - 3. Гипоидная
 - 4. Реечная
- Какая передача может использоваться для передачи вращения между валами, оси которых перекрещиваются (но не пересекаются)?
 - 1. Червячная
 - 2. Гипоидная
 - 3. Коническая
 - 4. Винтовая
- У какой червячной передачи к.п.д. как правило выше?
 - 1. С однозаходным червяком
 - 2. С двухзаходным червяком
 - 3. С трехзаходным червяком
 - 4. С четырехзаходным червяком
- Как называется передача, шестерня и колесо которой показаны на фотографии?

1. Цилиндрическая

- 2. Коническая прямозубая
- 3. Коническая с круговыми зубьями
- 4. Червячная

- Укажите направление линии зуба

- 1. Правое
- 2. Левое
- 3. Тангенциальное
- 4. Круговое

- Укажите направление линии зуба

- 1. Правое
- 2. Левое
- 3. Зубья прямые
- 4. Круговое

- Укажите тип передачи, колесо которой представлено на фотографии

- 1. Цилиндрическая
- 2. Коническая
- 3. Червячная
- 4. Гипоидная

- Укажите тип передачи, ведущее звено которой представлено на фотографии

- 1. Цилиндрическая
- 2. Винтовая
- 3. Червячная

- 4. Червячная глобоидная
- С каким числом зубьев можно нарезать прямозубое зубчатое колесо с помощью модульной фрезы, показанной на фотографии?

- С любым
- 2. С четным
- 3. От 55 до 134 включительно
- 4. До 55 и свыше 134
- Макет какой передачи показан на фотографии?

- 1. Червячной
- 2. Глобоидной
- 3. Винтовой
- 4. Реечной
- Какой инструмент применяется для обработки зубчатых колес с внутренними зубьями?

- 1. Долбяк
- 2. Модульная фреза
- 3. Зубострогальный резец
- 4. Червячная фреза
- На каком станке обычно выполняют обработку зубчатых колес с внутренними зубьями?

1. На зубодолбежном

- 2. На зубофрезерном
- 3. На зубострогальном
- 4. На шевинговальном
- Укажите марки сталей, применяемых для изготовления цементованных зубчатых колес.
 - 1. 12XH3A
 - 2. 20X2H3A
 - 3. 40X
 - 4. 65Γ
- Укажите марку (марки) материала (материалов), применяемых для изготовления венцов червячных колес.
 - 1. Бр О10Ф1
 - 2. 40X
 - 3. 38X2MIOA
 - 4. 30XΓT
- Какая передача как правило имеет меньший уровень шума при работе?
 - 1. Цилиндрическая прямозубая
 - 2. Коническая
 - 3. Червячная
 - 4. Цилиндрическая косозубая

4. КОМПЛЕКТ ОЦЕНОЧНЫХ СРЕДСТВ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Теоретические вопросы на дифференцированный зачет

- 1. Статика. Аксиома статики.
- 2. Связи. Типы связей.
- 3. Система сходящихся сил. Разложение сил.
- 4. Сложение сил.
- 5. Пара сил. Момент пары. Сложение пар.
- 6. Пространственная система сил. Параллелепипед сил.
- 7. Момент силы относительно оси. Равновесие пространственной системы сил.
- 8. Центр тяжести параллельных сил.
- 9. Центр тяжести тела, центр тяжести простейших фигур.
- 10. Кинематика. Движение точки.
- 11. Скорость точки. Ускорение точки.
- 12. Поступательное и вращательное движение твердого тела.
- 13. Линейные скорости и ускорение.
- 14. Динамика. Законы динамики.
- 15. Силы инерции. Уравновешивающий механизм.

- 16. Работа постоянной силы на прямолинейном участке сети.
- 17. Мощность.
- 18. Работа переменной силы на криволинейном участке пути. Сила тяжести.
- 19. Импульс силы. Количество движения.
- 20. Сопротивление материалов. Классификация нагрузок.
- 21. Напряжение. Метод сечений.
- 22. Растяжение и сжатие. Напряжение и деформация.
- 23. Закон Гука при растяжении и сжатии.
- 24. Продольные силы. Их эпюры.
- 25. Диаграмма растяжения низкоуглеродистой стали.
- 26. Смятие.
- 27. Срез. Сдвиг.
- 28. Закон Гука при сдвиге.
- 29. Кручение.
- 30. Изгиб.
- 31. Конические зубчатые передачи. Схема, геометрические параметры, область применения, сила, действующая в зубьях.
- 32. Виды подшипников скольжения и качения. Маркировка, монтаж на вал, способ смазки.
- 33. Расчет вала прямозубой передачи. Крутящие и изгибающие моменты и их эпюры.
- 34. Достоинство и недостатки подшипников скольжения. Расчет на износостойкость и нагрев.
- 35. Последовательность расчета конической зубчатой передачи. Область применения. Преимущества и недостатки.
- 36. Виды валов. Область применения, конструкция. Подбор диаметра вала.
- 37. Расчет вала косозубого цилиндрического редуктора на прочность и жесткость. Область применения валов, конструкция.
- 38. Виды подшипников качения в зависимости от нагрузки. Расчет на статическую грузоподъемность. Область применения, конструкция. Серии подшипников.
- 39. Классификация подшипников качения. Область их применения, материалы и методы изготовления.
- 40. Последовательность расчета цилиндрической передачи. Область применения передач. Преимущества и недостатки.
- 41. Подшипники качения. Достоинства и недостатки. Область применения.
- 42. Расчет ременной передачи. Типы ремней по ГОСТу. Область применения. Преимущества и недостатки.
- 43. Долговечность плоских и клиновидных ремней. Сшивка ремней. Область применения.
- 44. Тепловой расчет червячного редуктора. Способы уменьшения нагрева масла в редукторе.
- 45. Косозубые шевронные передачи. Сила действующая в зацеплении. Область применения.

- 46. Передача винт-гайка. Область применения, материалы и метод изготовления.
- 47. Прямозубая передача. Назначение, основные геометрические соотношения, область применения.
- 48. Расчет прямозубых цилиндрических колес на контактную прочность и изгиб, параметры, входящие в формулу. Область применения.
- 49. Резьбовые соединения, типы резьбы. Область применения, достоинства и недостатки.
- 50. Последовательность расчета конических зубчатых колес. Область применения.
- 51. Назначение, конструкция осей. Вращающиеся, невращающиеся оси.
- 52. Цепные передачи. Силы, действующие в зацеплении, шаг цепей по ГОСТу.
- 53. Ременная передача, силы напряжения в ремнях. Область применения.
- 54. Цепная передача. Достоинства и недостатки. Геометрические соотношения, маркировки цепей.
- 55. Последовательность расчета цепной передачи. Область применения.
- 56. Последовательность расчета цепной передачи. Преимущества и недостатки.
- 57. Расчет осей на прочность и жесткость. Конструкция осей, материалы.
- 58. Усталосное разрушение. Требования, предъявляемые к конструкции деталей машин.
- 59. Червячная передача. Последовательность расчета. Область применения. Преимущества и недостатки.
- 60. Шпоночные соединения. Достоинства и недостатки. Расчет и подбор шпонок.
- 61. Шлицевые соединения. Типы шлиц и расчет шлицевых соединений.

Практические задачи на дифференцированный зачет

- 1. Определить реакции опор балки. Дано: $F_1 = 10$ кH, $F_2 = 20$ кH (схема).
- 2. Определить реакции опор балки. Дано: $F_1 = 10$ кH, T = 40 кH, q = 0.8 кH/м (схема).
- 3. Фонарь весом 9 кН подвешен на кронштейне ABC. Определить реакции горизонтального стержня AB и тяги BC, если AB = 1,2 м и BC = 1,5 м (схема).
- 4. Кран удерживает груз G=10 кH. Найти N_1 и N_2 в стержнях BC и AB. Если AB=3.8 м, BC=2.6 м, AC=2 м (схема).
- 5. Два человека тянут за веревки, привязанные е кольцу в т. А направленные под прямым углом, один с силой $F_1 = 120$ кH, другой $F_2 = 90$ кH. С какой силой должен тянуть третий человек, чтобы кольцо осталось неподвижным.
- 6. На концы консолей балки действуют две равные параллельные силы $F = F_1 = 30$ кH. Определить реакции опор b = 6 м, a = 2 м (схема).
- 7. К вершине треножника АВСД в т. В подвешен груз P = 10 т. Ножки имеют равную длину и образуют равные углы с вертикалью 30° . Определить силы, действующие в ножках треножника.

- 8. На станке обтачивается вал. В направлении продольной подачи резец испытывает сопротивление (осевое давление) $P_y = 100$ кг, в направлении поперечной подачи (радиальное давление) $P_x = 220$ кг и в вертикальном направлении сопротивление $P_z = 500$ кг. Определить полное давление на резец.
- 9. Однородная консольная горизонтальная балка весом $P=150~\rm kr$ и длиной 6 м опирается на две вертикальные стены. Расстояние $AB=4~\rm m$. Определить давление на каждую из стен.
- 10. Найти центр тяжести сложной фигуры (схема фигуры).
- 11. Определить глубину шахты, если брошенный в нее камень достигнет дна, через 6 сек. С какой скоростью падает камень?
- 12. Точка движения прямолинейно по закону S = 4t + 2t. Найти ее среднее ускорение в промежутке между моментами $t_1 = 5$ c, $t_2 = 7$ c, а так же ее истинное ускорение в момент $t_3 = 6$ c.
- 13. Требуется обработать на токарном станке поверхность шкива радиусом R = 175 мм с частотой 20 об/мин. Определить скорость резания.
- 14. Тепловоз проводит закругление, длиной 800 м за 50 сек. Радиус закругления по всей его длине постоянный и равен 400 м. определить скорость тепловоза и нормальное ускорение, считая его движение равномерным.
- 15. Материальная точка весом 240 кг, двигаясь равноускоренно, прошла путь, S = 1452 м за 22 сек. Определить силу, вызвавшую это движение.
- 16. В поднимающейся кабине лифта производится взвешивание тела на пружинных весах (сила тяжести тела G = 50 H), натяжение пружин весов (т.е. вес тела) = 51 H. Найти ускорение кабины.
- 17. Какую работу производить человек, передвигая по горизонтальному полу на расстояние 4 м горизонтально направленным усилением ящик массой 50 кг? Коэффициент трения f = 0.4.
- 18. Для использования работы водопада поставлена турбина, к.п.д. которой $\eta = 0.8$. Определить в Л.С. полезную мощность турбины, если водопад в течение одной минуты дает 600 м³ воды, падающей с высоты 6 м.
- 19. Однородный массив ABCD массой m = 4080 кг. Определить работу, необходимую для опрокидывания массива вокруг ребра D.
- 20. Тело массой m=20 кг двигалось поступательно со скоростью $V_0=0,5$ м/с. Определить модуль и направление V_1 тела через 3 сек. после приложения к телу постоянной силы F=40 кH, направленной в сторону противоположную его начальной V_0 .
- 21. К двум стержням разного поперечного сечения приложены одинаковые силы. В каком продольные силы больше?
- 22. В стержне просверлено отверстие. Как это сказалось на величине продольной силы в ослабленном сечении?
- 23. К каждому из трех вертикальных стержней одинаковой площади поперечного сечения, но разной длины и разных материалов подвешены грузы. Будут ли одинаковы напряжения в стержнях?

- 24. На стальной ступенчатый брус (E = 2×10^{11} Па) действуют силы P = 20 кH и T = 30 кH. $F_1 = 400$ мм², $F_2 = 800$ мм², a = 0,2. Определить изменение длины Δ_1 бруса.
- 25. На стальной брус ($E=2\times 10_{11}$ Па) действуют силы P=20 кН и T=30 кН. Площади $F_1=400$ мм², $F_2=800$ мм², a=0,2, построить эпюры N и σ . Определить Δ_1 .
- 26. К двум вертикальным, стальным стержням одинаковой площади поперечного сечения, но разной длины подвешена горизонтальная балка. Сохранится ли горизонтальность балки, если к ее середине подвесить груз.
- 27. Тяга, соединенная с вилкой посредством болта, нагружена силами. Определить напряжение смятия в головке тяги, если P = 32 кH, диаметр болта = 20 мм, S = 24 мм.
- 28. Тяга, соединенная с вилкой посредством болта, нагружена силами. Определить напряжение среза в болте, если $P=32~\mathrm{kH}$, диаметр болта $=20~\mathrm{mm}$, $S=24~\mathrm{mm}$.
- 29. Определить модуль упругости II рода для сталей, используя зависимость между тремя упругими постоянными. Материал сталь.
- 30. Стальной вал вращается с частотой n=980 мин $_{-1}$ и передает N=40 кВт. Определить диаметр вала, если $[\tau_{\kappa}]=25$ мПа.
- 31. Для какой из балок требуется более прочное поперечное сечение (схема). Почему?
- 32. Определить передаточное отношение многоступенчатого редуктора, если известно $U_{12} = 3,145;\ U_{34} = 2;\ U_{56} = 5.$
- 33. Определить диаметр винта передачи «Винт-Гайка» $d_e=?$, если $F_a=4\kappa H$, $\Psi_H=1,8,\ \Psi_h=0,75,\ [\sigma_{cM}]=6H\Pi a.$
- 34. Определить число зубьев на ведущем колесе $z_1 = ?$, если $d_1 = 32$ мм, $a_w = 40$.
- 35. Определить высоту гайки передачи «Винт-Гайка» H = ?, если $\Psi_{\scriptscriptstyle H}$ = 1,8, d_1 = 45, h = 3.
- 36. Определить окружную силу, действующую в зацеплении конической передачи $F_t = ?$, если $N_1 = 2.2$ кВт, $n_1 = 2000$ мин $^{-1}$, $z_1 = ?$, $a_w = 80$, $z_1 = 21$ мм,.
- 37. Провести расчет (тепловой) червячной передачи, если известно что $N=5~\kappa B \tau$, $\eta=0.76,~\kappa_1=16,~S=0.8~\kappa^2,~[T]=333~K$.
- 38. Провести расчет червячной передачи на изгиб, если дано: $F_t = 4,7$ кH·м, $Y_F = 3,6, K_F = 1,14, b = 25$ мм, m = 2 мм.
- 39. Провести расчет конической передачи на изгиб, если известно: $F_t = 2$ к $H \cdot m$, $K_F = 2$, $Y_F = 4,2$, $b_2 = 20$ мм, m = 2 мм, $[\sigma_F] = 200$ мПа.
- 40. Провести расчет конической передачи на контактную прочность, если известно: $D_2 = 200$ мм, $\Psi = 0.25$, $T_2 = 1.5$ кH, $\kappa_H = 1.1$, $U_{12} = 2$, $[\sigma] = 350$ мПа.
- 41. Провести расчет косозубой передачи на изгиб зубьев, если известно: $F_t = 1,7$ кH, $Y_F = 3,6$, $K_F = 1,7$, $b_{\omega 2} = 80$ мм, m = 2 мм.
- 42. Провести расчет косозубой передачи на контактную прочность, если известно: $a_{\omega} = 189$ мм, $K_{\rm H} = 1.1$, $U_{12} = 3.14$, $T_2 = 15.0$ кH · м, $d_1 = 60$ мм.
- 43. Провести расчет прямозубой передачи на изгиб, если известно: $[\sigma_{\kappa}] = 30$ мПа, $Z_2 = 90$, $F_{t2} = 6,63$ кH, $a_{\omega} = 200$ мм, m = 2 мм.

- 44. Провести расчет прямозубой передачи на контактную прочность, если известно: $\Psi = 0.3$, $a_{\omega} = 250$ мм, $U_{12} = 3.14$, $T_2 = 400$ H·м, $K_H = 1$, $[\sigma] = 400$ мПа.
- 45. Определить крутящий момент на ведущем валу, если известно, что $N_1 = 15 \text{ кBr}$, $n_2 = 600 \text{ мин}$, $U_{12} = 3.14$.
- 46. Определить силы, действующие в зацеплении червячной передачи, если известно, что $T_1 = 20 \text{ кH} \cdot \text{м}$, $d_1 = 50 \text{ мм}$, $\alpha = 20$, $T_2 = 40 \text{ кH} \cdot \text{м}$, $d_2 = 100 \text{ мм}$.
- 47. Определить силы, действующие в зацеплении конической передачи, если известно, что $d_1 = 30$ мм, $T_1 = 200$ Н·м, $\alpha_{\omega} = 20^{\circ}$.
- 48. Определить крутящий момент на ведущем валу $T_1 = ?$, если известно, что $\eta_{1,2} = 0.97$, $U_{12} = 1.25$, $N_1 = 2$ кВт.
- 49. Определить силы, действующие в зацеплении, если известно, что передача прямозубая $T_1 = 477,67~H\cdot m$, $d_1 = 130~mm$, $\alpha_{\omega} = 20^{\circ}$.
- 50. Определить крутящий момент на ведомом валу прямозубого одноступенчатого редуктора, если известно что $n_1 = 600$ мин⁻¹, $n_2 = 900$ мин⁻¹, N = 20 кВт, $\eta = 0.96$.
- 51. Определить число зубьев на ведомом валу косозубого цилиндрического редуктора $Z_2 = ?$, если: $n_1 = 2500$ мин⁻¹, $n_2 = 2000$ мин⁻¹, $\beta = 12$ град., $a_w = 80$ мм.
- 52. Определить частоту вращения ведомого вала $n_2 = ?$, если $N_1 = 3$ кВт, $T_1 = 140$ H·м, $\eta_{1,2} = 0.98$, $T_2 = 170$ H·м.
- 53. Определить межосевое расстояние цепной передачи a=?, если $K_t=2,8$, $V=1,[p_o]=15$ мПа, $Z_1=16$, $N_1=100$ кВт, $n_1=1200$ мин⁻¹.
- 54. Определить линейную скорость ременной передачи V=?, если $\epsilon=0.01$, $n_1=1000$ мин⁻¹, $n_2=446$ мин⁻¹, $N_1=5$ кВт.
- 55. Определить диаметр шкива ведомого вала d=?, если $\epsilon=0,01,\ n_1=1000$ мин⁻¹, $n_2=446$ мин⁻¹, $N_1=5$ кВт.
- 56. Определить передаточное отношение и делительный диаметр шестерни, если: $n_1 = 400$ мин⁻¹, $n_2 = 160$ мин⁻¹, m = 2, $Z_1 = 36$.
- 57. Определить КПД трехступенчатого редуктора, если известно что $\eta_1 = 0.96$,
- $\eta_2 = 0.99, \, \eta_3 = 0.97.$
- 58. Определить передаточное отношение редуктора, если известно что $Z_1 = 6$,
- $Z_2 = 12$, $Z_3 = 20$, $Z_4 = 30$.
- 59. Определить крутящий момент на ведущем и ведомом валах редуктора, если известно, что $N_1 = 5$ кВт, $U_{12} = 3,14$, $\eta_{12} = 0,96$, $n_1 = 500$ мин⁻¹.
- 60. Определить окружную силу, действующую в зацеплении прямозубой передачи, если известно $N=3~{\rm kBr},\,n_1=500~{\rm muh}^{-1},\,d_1=30~{\rm mm}.$
- 61. Определить межосевое расстояние косозубой передачи, если известно что
- Ka = 4950, $U_{12} = 3,14$, $T_1 = 300 \text{ H} \cdot \text{м}$, $K_{HB} = 1,17$, $\Psi = 0,4$, $[\sigma] = 300 \text{ м}\Pi a$.
- 62. Определить делительный, внешний и внутренний диаметры шестерни одноступенчатой прямозубой передачи, если известно, что m=2мм, $Z_1=30$.

5. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ, ОПРЕДЕЛЯЮЩИЕ ПРОЦЕДУРУ ОЦЕНИВАНИЯ

При реализации программы учебной дисциплины, преподаватель обеспечивает организацию и проведение текущего и итогового контроля индивидуальных образовательных достижений обучающих.

Текущий контроль проводится преподавателем в процессе проведения теоретических занятий — устный опрос, оценка практических (лабораторных) работ, тестирования, контрольных работ.

Обучение учебной дисциплине завершается итоговым контролем в форме дифференцированного зачета.

Формы и методы текущего и итогового контроля по учебной дисциплине доводятся до сведения обучающихся не позднее двух месяцев от начала обучения по основной профессиональной образовательной программе.

Для текущего и итогового контроля преподавателем созданы фонды оценочных средств (ФОС). ФОС включают в себя педагогические контрольно-измерительные материалы, предназначенные для определения соответствия (или несоответствия) индивидуальных образовательных достижений основным показателям результатов подготовки: контрольных работ (тесты) и критерии их оценки; вопросы для проведения промежуточной аттестации по дисциплине (в форме дифференцированного зачета).

Оценка выполнения тестовых заданий

При ответе на вопрос может быть несколько правильных вариантов ответов или только один.

Инструкция по выполнению теста:

- 1. Проверка готовности учащихся к занятиям.
- 2. Запрещается пользоваться какими-либо техническими средствами (телефоном с интернетом и т.п.).
- 3. Варианты ответов отделяются от номеров вопросов тире.
- 4. После данного варианта ответа в виде цифры больше ничего не пишется (расшифровка ответа), там, где требуется слово в ответе написать, пишется только слово-ответ.
- 5. Что исправить уже данный вариант ответа его необходимо аккуратно одной косой линией зачеркнуть и рядом разборчиво написать новый вариант ответа (в противном случае все исправления будут оцениваться как ошибочные).
- 6. После проверки тестовых ответов до студентов доводятся оценки.

Критерии оценивания тестовых заданий

Оценка в пятибалльной шкале	Критерии оценки			
«2»	Выполнено менее 70% задания			
«3»	Выполнено70-79% задания			
«4»	Выполнено 80-89% задания			
«5»	Выполнено более 90% задания			

Критерий оценок при решении задач

Отлично Проведено полное правильное решение. Верно записаны формулы, выражающие физические законы, применение которых необходимо для решения задачи выбранным способом, проведены необходимые математические преобразования и расчеты, приводящие к правильному ответу

Хорошо Основные расчеты раскрыты, но в изложении имеются незначительные ошибки, выводы доказательны, но содержат отдельные неточности

Удовлетво Расчеты задачи произведены,

рительно но выводы недостаточно доказательны, аргументация слабая.

Неудовлетв Не произведены основные расчеты, отсутствуют физические орительно формулы

Критерий оценок при выполнении практических занятий

«Отлично» ставится, если:

- работа выполнена полностью;
- в логических рассуждениях и обосновании выполнения нет пробелов и ошибок;
- в выполнении нет информационных ошибок (возможна одна неточность, описка, не являющаяся следствием незнания или непонимания учебного материала).

«Хорошо» ставится, если:

- работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
- допущена одна ошибка или два-три недочета в выкладках, рисунках, чертежах или графиках (если эти виды работы не являлись специальным объектом проверки).

«Удовлетворительно» ставится, если:

– допущены более одной ошибки или более двух-трех недочетов в выкладках, чертежах или графиках, но студент владеет обязательными умениями по проверяемой теме.

«**Неудовлетворительно**» ставится, если: допущены существенные ошибки, показавшие, что студент не владеет обязательными умениями по данной теме в полной мере.

Критерии оценок на дифференцированном зачете

Оценка «5» - ответы на вопросы даны в полном объеме, все задачи решены верно.

Оценка «4» - ответы на вопросы даны в полном объеме, все задачи решены верно, но допущены неточности или несущественные ошибки при оформлении документов.

Оценка «3» - ответы на вопросы даны, все задачи решены, но допущены существенные ошибки и неточности.

Оценка «2» - ответы на вопросы не даны, задачи не решены.

6. ПЕРЕЧЕНЬ МАТЕРИАЛОВ, ОБОРУДОВАНИЯ И ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ, ИСПОЛЬЗУЕМЫХ ДЛЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

6.1. Требования к минимальному материально-техническому обеспечению

Реализация учебной дисциплины требует наличие учебного кабинета «Техническая механика».

Оборудование лаборатории:

- посадочные места по количеству обучающихся;
- рабочее место преподавателя;
- комплект плакатов по «Технической механике», макеты разъемных и неразъемных соединений; различных типов передач, электронные плакаты.

Технические средства обучения:

- компьютер;
- телевизор;
- мультимедиа.
- принтер и сканер;
- DVD-система;
- видеокассеты;
- интерактивная доска;
- диски.

6.2. Информационное обеспечение обучения

Перечень рекомендуемых учебных изданий, Интернет-ресурсов, дополнительной литературы

Основные источники:

- 1. Аркуша А.И. Техническая механика. Теоретическая механика и сопротивление материалов. М.: Высшая школа, 2016.
- 2. Вереина Л.И. "Техническая механика", М.: Высшая школа 2016.
- 3. Вереина Л.И., Краснов М.М. «Техническая механика», «Академия», 2018.
- 4. Винокуров А.И., Барановский Н.В. Сборник задач по сопротивлению материалов. М.: Высшая школа, 2018.
- 5. Мовнин М.С., Израелит А.Б., Рубашкин А.Г. Основы технической механики.-Л.: Машиностроение, 2017.
- 6. Никитин Г.М. Теоретическая механика для техникумов. М.: Наука, 2-16.
- 7. Олофинская В.П. Техническая механика: Сборник тестовых заданий. М.: Форум-Инфра-М, 2018.

- 8. Фролов М.И. Техническая механика. Детали машин. М.: Высшая школа, 2017.
- 9. Эрдели А.А., Эрдели Н.А. Детали машин. М.: Высшая школа: Академия, 2016.
- 10. Эрдели А.А., Эрдели Н.А. Теоретическая механика. Сопротивление материалов. М.: Высшая школа, Академия, 2018.

Электронные учебники:

1. Вереина Л.И., Краснов М.М. «Техническая механика», «Академия», 2012.

Интернет-ресурсы:

- 1. Техническая механика. Учебник для техникумов. | Л.П. Портаев176.9.24.71/book/759079
- 2. Техническая механика. Учебник для техникумов. | J1JL Портаев | digital library BookOS j BookOS. Download books for free. Find books, техническаямеханикадлятехникумов. Скачатькпіді. tr200.ru/Tphp7f...%EC%E5%F5%E0%ED%E8%EA%E0...
- 3. Техническая механика: Теоретическая механика. Сопротивление материалов: Учебник для машиностроительных специальностей техникумов 3-е изд.
- 4. Техническая механика. Учебник для техникумов. (Л.П. Портаев ... bookmist.net/books/bookid-322555.html
- 5. Электронно библиотечная система «Издательства Лань». Сайт http://e.Lanbook.com, elsky@ lanbook.ru
- 6. Электронно библиотечная система. Научно технический центр МГУ имени адмирала Г.И. Невельского. http://www.old.msun.ru
- 7. Электронно библиотечная система. Университетская библиотека онлайн. www.biblioclub.ru
- 8. Электронно -_библиотечная система «Юрайт» ООО «Электронное издательство Юрайт»: www. Biblio-online.ru, online.ru, t-mail: ebs@ urait.ru
- 9. Электронно -_библиотечная система. «IPR Books». ООО «Ай Пи Эр Медиа»: https://www.iprbookshop.ru

Дополнение и изменение в фонде оценочных средств на 2021/2022 учебный год

В фонд оценочных средств вносятся следующие изменения:

Фонд оценочных средс комиссии (ЦМК)		на заседании	цикловой методической
Протокол от20 Председатель ЦМК) г. №	- - -	
Председатель ЦМК		И.О. Фамил	РИ